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I. Introduction

One of the central problems in mission analysis, in real time as well

as in preliminary design, is the construction of a trajectory which permits

a set of mission objectives to be accomplished subject to numerous opera-

tiona] and other constraints. Mission objectives as well as constraints

are usually expressed as functions of the position and velocity vectors,

called the "state vector" for short, at various times. These times may

either be given directly or be defined implicitly as the time when a given

geometric or dynamic configuration is achieved.

The state vector at any time may be computed as a function of a set of

initial conditions and a number of control parameters such as duration, mag-

nitude and direction of thrusts. Thus, a split boundary value problem

results. In general, this functional relationship is complicated and highly

nonlinear, and in many cases no closed form expression of one set in terms

of the other is available. The difficulty inherent in the solution of such

split boundary value problems is compounded by the fact that the number of

constraints and objectives may be either larger or smaller than the number

of independent parameters to be determined. Further, it is often desirable

to select an optimum trajectory (defined according to some criterion, such

as maximum payload, shortest mission time, etc.) in cases where many

trajectories are possible. If such a program is to be used in real time, it



must further be capable of producing a solution independent of the avail-

ability of a good first guess. The program thus must be capable to start

with any "neutral" first guess and proceed to a solution.



2. Summary

A general formulation has been developed which contains all the prob-

lems described in paragraph i, and a method of solution was devised to

cope with this general formulation. This method has been applied to the

solution of a great variety of problems and many cases and has been proven

to have great power and flexibility. Essentially the formulation consists

in reducing all the problems described to the problem of finding the minimum

length of a vector. The construction of this residual vector is detailed in

Section 4.

The method of solution is an iteration technique which successively

improves the trajectory. These small corrections are determined by a local

linear approximation. Since, in fact, the problem is highly nonlinear, it

is necessary to restrict the size of the corrections to the linear range. This

range limitation further must be used to modify the direction of the correction

vector, for this is the only way to guarantee continued improvement of the

solution from iteration to iteration.

An inhibiting parameter is used to effect the limitation of correction

size. Control of the inhibitor to achieve these objectives is described in

Section 5. Essentially, the method used is a modification and extension

of a method described by Morrison (Ref. i) and Marquardt (Ref. 2).



Since the "residual vector" which is being minimized consists of com-

ponents of dissimilar character, scale factors must be introduced to properly

define the length of such a vector. These scale factors can then be adjusted

to control the rate of convergence to a solution and give varying emphasis

to the constraints according to their severity. They may also be used to

distinguish between two phases of the iteration, the first being the "selection

phase" where an acceptable trajectory is obtained, the second an "optimiza-

tion phase" where the best of many acceptable trajectories is found. The

handling of the scale factors in the various phases is described in Sections

6, 7, and 8.
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3. Notation

In what follows, lower-case letters will refer to (column) vectors of

various dimensions. If a vector has n(m) elements it will be referred to

as an n-vector (m-vector). Upper-case letters are matrices. A prime

(') applied to either a matrix or a vector denotes transposition. Some-

times capital letters will represent scalar values. The usage of each letter

will be made clear as it is introduced.



4. Formulation

For the sake of convenience, we lump both initial values and control

parameters together under the heading of independent variables and we

represent the end conditions by dependent variables. For the problem to

be solved, let

y = f(x)

stand for the relationship between the independent variables constituting

the m-vector x and the dependent variables constituting the n-vector

It is assumed that a procedure exists to compute y if x is known. Let

m

the vector of desired values of the constraint variables be denoted by y.

w

Then the problem is to find a vector of independent values x such that

m m

y = f(x)

y,

y and f are n-vectors and x is an m-vector. Note that, as far as

this technique is concerned, there is no restriction on the relative sizes

of m and n. However, in setting up any given problem, care must be

taken that the constraints do not permanently overdetermine the system and

that the constraints are at least plentiful enough to permit an interpretation

of any result (see Section 6) in case the system is underdetermined.

The symbol f(x) stands for any method of generating an end condition

if independent variables are known. The f's may take many forms. They

(i)

(la)



may be closed form solutions to differential equations; they may be dif-

ferential equations to be solved by numerical integration; or sometimes

they may be relatively simple algebraic relationships. In any case, it is

expected that most of the f's represent highly nonlinear relationships

between x and y.

This nonlinearity prevents a direct solution of the problem. The tech-

nique starts by replacing the nonlinear problem with a linear one, by an

expansion about a nominal trajectory. On the one hand, we get the advan-

tage of having a direct solution; on the other hand, we have the disadvan-

tage that the solution so obtained is not really the solution to the original

problem. To allow for this, an iteration technique is applied to the solu-

tion of the linear problem.

___f
Thus, consider the matrix of partial derivatives of the form _x "

this matrix be denoted by P. We replace (1) by its first-order Taylor

Let

expansion at x.

or

y = f(x) = f(x) + P(x-x)

m m

y- y = P(x-x)

In principle if n = m, that is, if the number of dependent variables

equals the number of independent variables, and if P is nonsingular, so

-1
that P exists, we can write

(2)
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Ax = p-l (y_ y) (3)

and

D

x : x + AX (4)

Equation (2) represents a linear approximation to equation (I). Con-

sequently when the new value of x given by equation (4) is used to com-

pute y by equation (I), the value of y cannot be expected to be the

desired value. Indeed, it is not even guaranteed that the new length of

the Ay vector is less than the previous length. All of this is a reflection

of the fact that, for too large a vector Ax, the linear estimate may not

be adequate and the elements of the matrix of partial derivatives have

values differing from their old values due to second order effects. In some

lucky cases this is not too serious, and by iterating the computations

represented by (i), (3), and (4), a solution of (la) is obtained. For addi-

tional reliability, however, other measures are adopted. At the same time,

we desire a method for handling cases where m, the number of x-parameters,

is not equal to n, the number of y-parameters. Both of these objectives

can be achieved by restating the problem as follows.

Consider the scalar

R : (Ay)' Wy Ay

where Wy is an nxn diagonal matrix of positive scale factors making

the components of the vector by compatible among themselves. The

(s)



number R is, of course, the weighted sum of the squares of the residuals

in the desired quantities. Because the scale factors are positive, R can

never be negative. On the other hand, if all of the residuals can be made

zero, R can be zero. Thus, in either case, we desire to reduce R to a

minimum. Equation (2) says that, for any vector Ax, the predicted new

A y will be:

Ay = y- y- P_x

Formula (3) may produce a Ax vector which is quite large, especially

when y - y is large or P is ill-conditioned. Due to nonlinear effects,

such a Ax vector creates quite wild effects of Ay. To prevent this, we

impose the side condition that

S = (Z_x)' W x Zlx _ So

where W x is an mxm diagonal matrix of scale factors making the com-

ponents of the Ax vector compatible and S O is a constant chosen to

guarantee the approximate validity of the linear estimate. For any vector

x we construct _y as in (6)and compute R

We attempt to choose Lix so as to minimize

This results in the formula for Ax

from it by equation (5).

R within the constraint (7).

given by equation (8):

Ax = (P'WyP + lWx )-1 P'Wy Ay

where k is a parameter chosen to enforce (7). It is called the inhibitor.

(6)

(7)

(s)
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Morrison has shown that as _ increases, the length

Thus, it is always possible to choose _ so big that

inequality (7). It is, however, not necessary to determine

obtain an equality in equation (7) since too large a value of

sequently, too small a value of

iterations (see also Section 5).

of this choice.

S decreases.

S satisfies the

k so as to

t and, con-

S will at most cost a few additional

See the next section for the mechanism

Apart from the a priori

expressed by equation (7), the inhibitor

actual reduction of the residual vector R

limitation of the permissible size of Ax

k is also used to achieve an

[equation (5)3 in cases where

the limitation expressed by equation (7) is not adequate to guarantee

linear behavior.

Now the _x obtained from (8) is used in (4) to get a new value of

so that the process can be repeated. Thus, the iteration procedure con-

sists of repetitively computing the following items:

x

(1) y from equation (1)

(2) the P matrix

(3) the value of the inhibitor k

(4) the value of the vector A x

(5) the new value of x from (4)

(see Section 4)

from (8)

11



Since the derivation of (8) is a least-squares procedure anyway, it

can be applied to any problem for which n am. In addition, if n < m,

and if one of the dependent variables is to be optimized, (8) can be used

to find x so as to attain all of the other dependent variables and come as

close to the optimized one as possible. Thus, there may be more con-

straints, fewer constraints, or the same number of constraints as there

are unknowns in the problem.

12



5. Mechanization of the Inhibitor Control

The theory leading to equation (8) states that the unknown parameter

k should be determined to satisfy the inequality

S[Ax(l)] = S(A) = [Ax(A)]'Wxax(l) -<So

As stated above, S is a decreasing function of k; indeed S(I) -"0

as k-" = Generally, it would be most efficient to take a step in Ax as

big as (7) will allow, or, in other words, to make k as small as (7) will

allow.

Inequality (7), however, does not lend itself to easy solution and

such a solution is not necessary. Hence, a strategy for choosing k at

each iteration step has to be developed. A good global strategy must be

based on two conditions:

(_) At each stage

S(_) _ SO

(_) If R (p) denotes the value of

R(P) _ R (p-I)

r at the pth iteration

This second condition is a statement of the obvious fact that minimizing

R requires reducing R. Most of the problems to which the iteration has

been applied have been overdetermined, in the sense that n am. In case

(7)

(7)

(9)
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this happens, where R approaches its minimum value it begins to move

very slowly in response to Ax, so that care must be taken not to over-

shoot the point where the smallest value is attained. Condition (9) assures

this.

A strategy which satisfies conditions (rv) and (/_) above and efficiently

controls the necessary number of iterations is the following:

Let

a > 1 and b a a

Let X (p-I) be the value of l

value of ),, equation (8) furnishes

Equation (I) with x + Lkx(l) for x

from the previous iteration. For any

ZIx(X). Equation (7) defines S(1).

defines y(),):

Thus

y(X) = f[x+Ax(X)]

R(X) : [y- y(k) J' Wy[y- y(X) J

is the value of R

(a)

(b)

(c)

corresponding to X.

Set t = l(p-1)
b

Compute S(I) and compare it with SO .

If S(X) < SO , proceed to (d).

If S(X)>S o , replace X by aX and repeat

from step (b). The final value X is aqx

where q is the smallest integer such that

s(aqx) < S o.

(1o)
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(d) Compute R(>,) and compare it with R[ k(p-I) ].

(e) If R(X) _R[k (p-I) ], set k(p) =k.

If R(X)ZR[/(p-I) ], replace k by al and

repeat from step (d). The final value 1 (p) is

aql where q is the smallest integer such that

R(aql) < R[ I(P-I) ].

Note that aql increases with q. Thus, at step (c), there must be a

value of q satisfying the inequality. Indeed for any reasonable choice of

So , a ql will be of moderate size. At step (e), aql may eventually ex-

ceed the capacity of the machine. Detection of this situation is used to

determine that the process has reduced R to its local minimum value.

(See Section 9, below.)

Examination of (7) shows that, for a given size of A x, the size of l

governed by the size of the elements of Wy and W x. Typically, W x is

diagonal, with greatest value along the diagonal equal to 1. Wy has

elements about 10 -6 . In this case a good first guess for _(I) is 10 -6

If k is started too low, the strategy immediately (i.e., within the first

iteration) builds it up to a value consistent with the problem. If I is

started too high, the first few iterations are wasted while the strategy

allows k

iteration.

Choices of a and b have not been studied from the viewpoint of optimi-

zation, but wide variations within the scope of (1 O) have negligible effect

on the speed of convergence.

to decrease by means of step (a) which is applied only once per

The parameters a and b both are currently chosen to be 10.

is
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6. Constraints

The "end" conditions to be achieved fall into three classes:

Class I.

Class 2.

Class 3.

Parameters which have to achieve a given value

Parameters which have to lie in a given interval

Parameters which are to be minimized or maximized

(" optimized")

Each of these classes is treated separately, as far as the corresponding

values in the weight matrix Wy and in the residual vector Ay are

concerned.

We introduce two new vectors Ymin and Ymax' where each component

of Ymin does not exceed the corresponding component of Ymax:

Ymin < Ymax

At each stage of the iteration, the vector

component, with both Ymin and Ymax"

the inequality

Ymin _ Y _ Ymax

y is compared, component by

If each component of y satisfies

the procedure is terminated, and the current vector x of independent

variables is the solution to the problem (see Section 9).

(il)
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In general, of course, (ii) will not be satisfied. The vector y is

described to the program solely in terms of Ymin and Ymax:

-- 1

Y = _ (Ymin + Yma_ (12)

The relationship between each element of Ymin and the corresponding

element of Ymax now indicates to which class the element of y belongs.

If y is of Class I, the primary quantity is y and the corresponding

elements of Ymin and Ymax are chosen close together:

-- 6
Ymin = y - _ " Ymax = y + 6 (13)' 2

where 6 (>0) is a tolerance introduced for numerical purposes, since it

is usually impossible to insist on absolute equality in digital computing.

The value of 6 for Class 1 parameters may be chosen as small as physical

reality demands provided it is above the computational noise. The progress

of the iteration or the solution obtained, in general, is not affected by this

choice except that extremely small values may tend to increase the time

for answers to be determined. In particular, the existence or nonexistence

of a solution does not depend on the choice of 6, so long as it is chosen

consistent with the restrictions detailed above.

For elements of Class 2, the interval which must contain the y-value

is the primary quantity and is used to describe the corresponding components

of Ymin and Ymax' That is, if the interval is a -<y _ b, we set

Ymin = a ; Ymax b (I4)

17



for that element, and for purposes of residual computation

mined from equation (12).

y is deter-

Now an important distinction between this class and Class 1 arises.

In Class 2, any value within the interval is just as acceptable as any

other. Thus, there is no merit in further reducing this component of y - y

and therefore, at each stage of the iteration, if any component of y belongs

to Class 2, and if it is within its acceptable interval, the corresponding

row of the matrix P, the corresponding row and column of the matrix Wy,

and the corresponding contribution of this component of the Ay vector to

the residual R are all deleted during the current iteration.

This action has two effects. First, application of the basic formula (8)

no longer takes this particular parameter into consideration when it com-

putes the correction Ax. Secondly, the current value of the penalty func-

tion R contains no contribution from this parameter. If the corrected x

vector becomes such that a Class 2 parameter moves out of its interval of

acceptability, R will now include its effect. Thus, R may be increased

and, as seen in Section 5, the value of the inhibitor _ will be increased.

Thus, the correction is held back to a size small enough that the component

of Ay remains deleted from the value of R. In this case, we say that

this dependent variable has approached a barrier.

Sometimes reintroduction of a component of Ay into the computation

of R is accompanied by changes in other components of Ay, resulting in

18



a reduction of R in spite of the reappearance of a previously deleted

componentof Ay. Naturally, in this case, the procedure cannot detect

the presence of the barrier, and continues without increase in k. Later

iterations will, however, rectify this situation.

To mechanize this distinction between Class 1 and Class 2 parameters

and to achieve the deletion of components, it is convenient to introduce a

vector G of switches c, each of whose n elements has the value 1 or

0. If a dependent variable is of Class I, the corresponding element of C

is 1; if it belongs to Class 2, the element is 0. (If the variable is of

Class 3, the element of C is also 0, but the distinction between Classes

2 and 3 is made on the basis of the values actually being computed.) Now

when any dependent variable is within its interval, the weight matrix Wy

!

is replaced by a matrix W with the corresponding row and column multi-
Y

plied by the component of C corresponding to that variable. The matrix

Wy appears in all the computations involving the partial matrix P or the

!

residual vector _y. Thus, when Wy is used in formulas (7) and (8)

instead of Wy, the required deletions are automatic. Note again that

this deletion is done separately for each iteration; that is, Wy is always

I

the matrix operated on by C, not the Wy matrix from the previous itera-

tion.

A Class 3 parameter is designated by its relative weight, not by the

method of computing residuals (see Section 7). However, for uniformity,

19



the interval of acceptability must still be established. This interval is

chosen so that it cannot possibly contain the values of the parameters which

are attainable when the Class 1 and 2 parameters are acceptable. If it is

desired to minimize a variable, the Ymax element must be taken smaller

than attainable; if the variable is to be maximized, the corresponding Ymin

element must be taken larger than attainable. Usually, for Glass $ variables

the corresponding values of Ymax and Ymin are equal, but this is not

necessary.
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7. Scale Matrices

The scale matrices W x and Wy, in addition to making dissimilar

components compatible, are also used to represent the relative importance

of the independent variables and of the dependent variables. In the most

general situation W x and %Vy can be any symmetric, positive definite

matrices of order m and n, respectively. Thus, for any vector Ax,

the quantity

that

(Ax)'WxAx is defined and is a scalar with the property

(Ax)'WxAx > 0

unless Ax is the zero vector. Corresponding statements can be made

about Wy. Up to this time, experience with the iterator has been with

diagonal W x and Wy, and such diagonal matrices have always proved

adequate. Such a restriction is equivalent to assuming that the variables

are uncorrelated.

A diagonal matrix is indeed positive definite if, and only if, all the

elements on the diagonal are positive. Thus,

S = (Ax)'WxAx reduce to _wy(Ay) 2 and

IR = (Ay WyAy and

_wx(Ax) 2, that is,

weighted sums of squares of residuals and corrections, respectively.

use w x and Wy to denote entries on the diagonals of W x and Wy,

respectively. Based on this meaning of R and S, it makes sense to

speak of an individual term of either sum.

We

(I 5)
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At each iteration, the size of the components of Ax are adjusted

so that the individual terms of S are about equal. Similarly, near con-

vergence, the size of the components of Ay are such that the individual

terms of R are about equal. This equality, with regard to both the terms

of R and S, is in terms of program units. Thus, for example, an incre-

ment in time may be measured in hours and an increment in angle in radians.

An error of 0.01 hours in arrival time, for instance, is usually insignifi-

cant while an angle of 0.01 radians may be quite significant (in calcula-

ting fuel used to execute a plane change, say). To equalize these effects,

the user may choose w x values so that each change in Ax has about the

same relative significance. A smaller value of w x for any component of

A x allows a larger amount of change in that component, and vice versa.

Note, however, that the weight w x multiplies the square of Ax so that

multiplying w x by I00, say, has the effect of reducing Ax by only 10.

In addition, inspection of equation (8) shows that, if the inhibitor _ is so

small as to be negligible, differences in the sizes of w x have no effect.

In summary, then, the user controls the relative rates of convergence

of the independent variables to their solutions by choosing the relative

sizes of w x. If there is more than one solution for any variable, the actual

answer obtained may depend on these rates to a great extent. Otherwise,

the choice of w x is not critical; only the speed of obtaining an answer is

affected.

22



The values of Wy govern the progress of each iteration, but their

full effect is realized only near the converged answer. It is well to remem-

ber that equation (8) is used with a modified form of the matrix Wy. Thus,

near convergence, several of the dependent variables y will be within

regions of acceptability, and, consequently, deleted from equation (8) and

from the calculation of the penalty function R. Those terms which remain

in R are the ones which are about equal. Again, equality is in terms of

program units. The user controls the relative size of the residuals of

Class i and 3 variables as well as how close Class 2 variables are to

their barriers (see Section 8) by his choice of Wy. A larger value for Wy

causes a smaller residual in a Class 1 variable or a closer hugging of the

barrier in a Class 2 variable if, indeed, a barrier is reached. Smaller

values for Wy cause larger residuals in Class 1 variables and larger ex-

cursions from barriers in Class 2 variables. As a result, if he chooses,

the user may get higher (or lower) optimum values for Class 3 variables by

allowing more error in Class I and 2 variables. This effect may be achieved

by increasing Wy for Class 1 and 2 variables, or by decreasing wy for

Class 3 variables.

If a problem requires the "optimization" of two or more variables, that

is, requires more than one Class 3 variable, the user must assign, by

proper choice of Wy, {he relative importance of each one. In effect, a

linear combination of these two variables will then be optimized.

23



The Wy have another function in the early stages (selection mode)

of the iteration. During selection, Class 3 variables must have weights

Wy so small that their contribution to R is negligible compared to the

residuals of Class I and 2 variables. This is the really distinguishing

feature of Class 3 variables. As long as any Class 2 variable is outside

of its region of acceptability (up to a numerical tolerance), the corres-

ponding terms in R must be larger than the terms for Class 3 variables.

This will clarify the notion of inaccessible values for Class 3 variables in

Section 6. Values are inaccessible if they are inaccessible while the Class

1 and 2 variables are within their regions of acceptability.

During selection, it may also happen that a Class 2 variable has a

wide range of acceptability, but that it must be brought within that range

before too many Class 1 variables get close to their respective desired

values. This is due to the requirement that, at each iteration, the total

penalty function R must not increase. Sometimes, if a Class 1 variable

has a small residual term in R and if the Class 2 variable has a relatively

large term in R, there is no way to bring the latter within its range of ac-

ceptability without causing the residual in the Class 1 variable to grow,

in turn causing R to get larger. Consequently, a stand-off may result,

with neither variable acceptable. To prevent this, a relatively large value

of Wy must be applied to the Class 2 variables of this type. Typical in-

stances of such variables in the Apollo Mission Design are the various

24



inclinations, which have wide limits of acceptability, but which must be

forced to within their interval of acceptability before any other residual

makes a large contribution to equation (8).

As a general rule, one may say that the relative sizes of the several

w values represent the respective relative rates at which the dependentY

variables approach their final values. The ordering is, first the Class 2

variables mentioned above, then the remaining Class 2 variables, along

with the Class i variables, and finally the Class 3 variable(s).

Mathematically speaking, only the relative sizes of w x, Wy and

are important. Their absolute sizes must be chosen so that equation (8)

does not cause overflows. The particular procedure in use for solving

equation (8) requires that the value of _, satisfy

k m < 1038 (16)

where m is the number of independent variables. Care must be taken during

both the selection and the optimization modes that ), does not violate the

above inequality. The usual approach is to take the various w x values

equal to i, except where special comparative weightings are needed. Thus,

the size of the entries in the matrix P governs the choice of the various Wy

to insure that the inequality (16) is not violated. It is wise to allow Wy to

be smaller than actually required by the inequality, so as not to terminate

the procedure prematurely. It is important to note that, except for inequality

25



(16), the absolute size of I, wx, and Wy is of no importance to the

procedure; only the relative sizes are significant in determining the course

and destination of the procedure.

26



8. Barriers

In Section 6 we introduced the notion of a barrier and how it arises.

This section describes how barriers are detected and how the knowledge

that a barrier exists is used.

A dependent variable y* is at a barrier if

(i)

(2)

(3)

it belongs to Class 2;

Ymin* _ y* < Ymax* for that variable; and

either , ,

Ymax- y

(a) . .
Ymax - Ymin

E

or

Y - Ymin
(b)

Ymax Ymin

_ E

Condition (2) expresses the fact that the current value of y is acceptable,

and condition (3) states that the distance of y* from one or the other end-

point of its interval of acceptability is within a fraction ¢ of it full range.

The current value of _ is 0.002.

The dependent variables are scanned in order. The first combined

occurrence of conditions (I), (2) and (3) marks the variable on which action

is taken. Further variables are not examined.

27



The action taken depends on whether the iteration is in the selection

mode, or in the optimizing mode. In the selection mode, there must be at

least one dependent variable y of Class 1 which is outside of its tolerance

interval. If all variables in Class 1 are inside their respective tolerance

intervals, the iterator is in the optimizing mode. The assumption is made

here that the weights Wy are so chosen that, at the time when all the

Class I variables are near their desired values, the Class 2 variables are

all within their regions of acceptability, or close enough to be brought in

quickly. No violation of this assumption has ever been observed.

Now consider what happens if a dependent variable is at a barrier

during the selection mode. This means that a Class 1 variable is not at its

desired value, but that some Class 2 variable y* is in its acceptable

range. To be as close as within c of full range to an endpoint of the

range means that except in very fortuitous combinations of circumstances,

the corrections Ax to the independent variable required to bring the Class

1 variable significantly closer to its desired value are such as to drive y

out of its acceptable range. Thus, in accordance with the procedure of

Section 5, the value of the inhibitor has increased to a size big enough to

keep the y* acceptable. If no further action is taken, the inhibitor X

will continue to increase until the iteration is terminated because inequality

(16) is violated before a solution is obtained. The assumption is made that

another solution (combination of independent variables) exists, which is in

28



the vicinity of the other endpoint of the range of acceptability for y .

Thus, having detected that y* is at a barrier in the selection mode, the

following action is indicated:

(i)

(2)

(3)

(4)

(s)

(6)

(7)

Five iterations are performed, without increasing the iteration

counter.

The current value of the inhibitor is reset to a very low value.

During these iterations, the region of acceptability for y*

is contracted to a single point whose value is the value at

the endpoint of the acceptable interval opposite to the de-

tected barrier.

Before the first of these iterations, a new residual in y*

is created. The previous value of the penalty function is

corrected for this, and the resulting value is used in in-

equality (9).

At the conclusion of the five iterations, the interval of ac-

ceptability is restored, and

The current value of the penalty function is again corrected

for this change, and used in inequality (9).

The value of the inhibitor is again reset to a low value

[not necessarily the same as in step (2)].

It is clear that, at the beginning of these iterations, a large value in

the residual Ay* is built up, since its acceptable region is now different.

Thus, all the independent variables will be pushed away from their previous

values, so that there now exists a chance to iterate to the new solution.

After five of these iterations, the variable y* is close to its new desired

value and the remaining dependent variables are, generally, close to their

required values. Steps (5), (6) and (7) merely restore the original require-

ments, and the iteration can now proceed.
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In problems with a large number of variables of Class 2, several of

these barrier conditions may arise; in each case the appropriate procedure

is taken each time until a solution is found within all the intervals of

acceptability.

In contrast to a rather uncomfortable feeling we have about reaching a

barrier in the selection mode, we are happier when a barrier is reached

during the optimizing mode. In this case we have determined that, out of

all the possible values of y* within its interval of acceptability, the one

which is associated with the optimum value of the G/ass 3 variables is,

indeed, the one at the endpoint, or barrier, where we happen to be. If no

action were taken, of course, as above, the inhibitor X would be increased

and the procedure would be terminated. This would preclude any further

optimization which could be achieved if other Glass 2 variables were allowed

to vary further, with this new constraint. Thus, we proceed to enforce this

condition, that y* has for its interval of acceptability the single point

whose value is the value of the barrier it had come to. Note that this is

different from the procedure (3) in the selection mode, where we try to attain

the opposite barrier; here we insist on staying at the current barrier.

Despite the fact that y* belongs to Class 2, its residual now can

never be deleted from formulas {7) and (8), since it will never achieve exact

equality with a given number in the computer. Thus, all further corrections

_x are calculated so that y* continues to have almost the same value.
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We may say that the independent variables move along the barrier in

their domain. That is, the single point at the end of the interval of ac-

ceptability is transformed into a "surface" in terms of the independent

variables x, on which all further sets of x must lie.

As further barriers are reached, the same action is taken until the

procedure terminates because now the combined number of Class 1 variables

and Class 2 variables at barriers is equal to the number of independent

variables -- that is, the system is just determined -- or until one of the

other termination conditions occurs first.

The weighting factors on the Class 2 variable must thus be chosen with

some care because they determine just how far away from the barrier the

independent variables may wander in seeking to optimize the Class 3 vari-

ables. During this stage of optimization, no value of y* is acceptable,

so that it may lie equally probably on either side of the newly-found required

value. In other words, it may lie just inside or just outside the original in-

terval of acceptability. The user must choose the relative weights for his

Class 2 and 3 variables such that only tolerable excursions from acceptability

are gotten. The smaller the weight for the Class 2 variable is, compared to

that of the Class 3 variable, the further the variable can depart from its

originally required interval. Of course, the user may also shrink his original

limits of acceptability if he cares to, so that the final values are still ac-

tually acceptable, without the iteration knowing about it.
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9. Termination Procedures

In this section, we will simply list the several modes by which the

iteration procedure is terminated. Each of the following is a cause for

termination.

a,

Do

c.

d.

An error has been detected in computing the dependent variables,

using (1), during the first iteration. Here it is suspected that

the input data are wrong; they must be corrected to proceed.

An error has prevented computation of the P matrix at any stage.

This depends on the particular method used to compute P, which

is beyond the scope of the present report.

An error has prevented solution of equation (8) at any stage.

All of the dependent variables satisfy inequality (1 I);

Ymin < Y < Ymax

e.

f.

The maximum number of iterations specified by the user has been

exceeded.

The value of ),

pute det (P' Wy
(16).

has exceeded the capacity of the machine to com-

P + XW x) , which implies a violation of inequality

With reference to condition a, above, ifthe y-values cannot be com-

puted after the first iteration, then too large a step was taken in the vector

of independent variables. This is clear because, at previous iterations,

the vector y could indeed be computed. This is just another reason to

multiply the inhibitor X, by a,

enough to its previous value that

Section S.

successively until the x-vector is close

y can still be computed. Compare

(11)
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I0. An Example

The iterator described above can be applied to a tremendous variety of

problems. In this section we describe just one of the many applications it

has had. It is the problem of finding the initial conditions for a trajectory

starting at some point on a circular parking orbit around the moon and

ending in the vicinity of a point on the surface of the earth about four days

later. To be more precise, the unknowns are

x I : increase in scalar velocity at transearth injection

x 2 : amount of plane change at transearth injection

x 3 : selenographic longitude of sub-spacecraft point at transearth

injection

The Class I y variable is

Yl : height of perigee if the orbit is assumed continued in a vacuum

The Class 2 y variables are

Y2 : distance -- along surface of the earth

site to osculating plane at reentry

Y3 : inclination of osculating plane at reentry

Y4 : range -- along surface of the earth --
of designated site

Y5 : time from transearth injection to landing

-- from designated

from reentry to longitude
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The Class 3 variable is

Y6 : percentage of weight consumed in performing the transearth
injection

The Ymin and Ymax vectors are

min max

Yl 43.7 miles 48.3 miles

Y2 - 690.5 miles 690.5 miles

Y3 12° 40o

Y4 1380.9 miles 5753.9 miles

Y5 86 hours iI_) hours

Y6 0°'4 0%

The odd numbers used for the distances arise from the fact that the output

data were in statute miles, while requirements were given in round numbers

of nautical miles. The interval for

around the desired value of 40 nm.

Yl represents a small tolerance of +2 nm

The intervals for Y2 and Y4 represent

the geometry of the landing area, which must contain the landing point. The

intervals for Y3 and Y5 are operational restrictions. There is a solution

with a given inclination every 24 hours. This explains why the interval for

Y5 is 24 hours long. The computable values for Y6 are all between 0

and i, so that the interval for Y6 indicates that Y6 is to be minimized.

The weights w are all i. The w are:
x y
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weight

YI 4.8 x 10 -7

Y2 4.8 x 10 -7

-5
Y3 3.1 x l0

Y4 4.8 x l0 -7

Y5 4.8 x 10 -7

Y6 7.3 x i0-I0

Table I presents the values of X, x, and y for each iteration. Note

that the selection mode terminates at the seventh iteration. During iterations

7 through 12, the percentage of fuel used is reduced, due to the fact that

the magnitude of the plane change AA is decreasing. The return inclination

changes with AA and the optimum fuel consumption occurs for the extreme

value of the inclination (40o).

The optimum, however, occurs in the interior of the allowable reentry-

range interval and the major optimizing changes of reentry range occur sub-

sequent to the twelfth iteration.
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Figure i displays the behavior of loglo _ for the first sixteen

iterations. The shape is typical of the iteration process. At the

beginning _ behaves quite violently, reaching values which are quite

high. As a solution (in the select mode) is approached, _ decreases,

only to increase again at the iteration where selection is computed,

then staying relatively constant until each barrier is reached. At

each barrier _ increases moderately. Finally, although not shown, when

optimization is computed (on the 27th iteration) _ increases to a

number bigger than the computer will accommodate.

Figure 2 displays the behavior of X2 and _,

the behavior of Y2' YS' and Y6" At iteration 13,

variables have been slowed down. Thus, the scales in Figures 2 and 5

are expanded at the thirteenth iteration. Notice that at the fifteenth

iteration there is another slow-down as the minimum value of Y6 is

reached.

while Figure 5 displays

all of the x and y
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